Sophie

Sophie

distrib > Mandriva > 2010.2 > i586 > by-pkgid > b92d07bcce6b7f2da3b9721b1d9483a1 > files > 61

python-cvxopt-1.1.2-1mdv2010.1.i586.rpm

#!/usr/bin/python

# Figures 7.6 and 7.7, page 383.
# Chebyshev bounds.

import pylab
from math import pi, sqrt
from cvxopt import matrix, spmatrix, mul, cos, sin, solvers, blas, lapack
solvers.options['show_progress'] = False

# Extreme points and inequality description of Voronoi region around 
# first symbol (0,0).
m = 6
V = matrix([ 1.0,  1.0, 
            -1.0,  2.0,
            -2.0,  1.0,
            -2.0, -1.0,
             0.0, -2.0,
             1.5, -1.0,
             1.0,  1.0 ], (2,m+1))

A0 = matrix([-(V[1,:m] - V[1,1:]), V[0,:m] - V[0,1:]]).T
b0 = mul(A0, V[:,:m].T) * matrix(1.0, (2,1))

# List of symbols.
C = [ matrix(0.0, (2,1)) ] + \
    [ 2.0 * b0[k] / blas.nrm2(A0[k,:])**2 * A0[k,:].T for k in 
    xrange(m) ]

# Voronoi set around C[1]
A1, b1 = matrix(0.0, (3,2)), matrix(0.0, (3,1))
A1[0,:] = -A0[0,:]
b1[0] = -b0[0]
A1[1,:] = (C[m] - C[1]).T
b1[1] = 0.5 * A1[1,:] * ( C[m] + C[1] )
A1[2,:] = (C[2] - C[1]).T
b1[2] = 0.5 * A1[2,:] * ( C[2] + C[1] )

# Voronoi set around C[2]
A2, b2 = matrix(0.0, (3,2)), matrix(0.0, (3,1))
A2[0,:] = -A0[1,:]
b2[0] = -b0[1]
A2[1,:] = (C[1] - C[2]).T
b2[1] = 0.5 * A2[1,:] * ( C[1] + C[2] )
A2[2,:] = (C[3] - C[2]).T
b2[2] = 0.5 * A2[2,:] * ( C[3] + C[2] )


def cheb(A, b, Sigma):

    # Calculates Chebyshev lower bound on Prob(A*x <= b) where
    # x in R^2 has mean zero and covariance Sigma.
    #
    # maximize    1 - tr(Sigma*P) - r
    # subject to  [ P,                    q - (tauk/2)*ak ]
    #             [ (q - (tauk/2)*ak)',   r - 1 + tauk*bk ] >= 0,
    #                                                 k = 0,...,m-1
    #             [ P,   q ]
    #             [ q',  r ] >= 0
    #             tauk >= 0, k=0,...,m-1.
    #
    # variables P[0,0], P[1,0], P[1,1], q[0], q[1], r, tau[0], ..., 
    #     tau[m-1].

    m = A.size[0]
    novars = 3 + 2 + 1 + m

    # Cost function.
    c = matrix(0.0, (novars,1))
    c[0], c[1], c[2] = Sigma[0,0], 2*Sigma[1,0], Sigma[1,1]
    c[5] = 1.0

    Gs = [ spmatrix([],[],[], (9,novars)) for k in xrange(m+1) ]

    # Coefficients of P, q, r in LMI constraints.
    for k in xrange(m+1):
        Gs[k][0,0] = -1.0   # P[0,0]
        Gs[k][1,1] = -1.0   # P[1,0]
        Gs[k][4,2] = -1.0   # P[1,1]
        Gs[k][2,3] = -1.0   # q[0]
        Gs[k][5,4] = -1.0   # q[1]
        Gs[k][8,5] = -1.0   # r
    # Coefficients of tau.
    for k in xrange(m):
        Gs[k][2, 6+k] = 0.5 * A[k,0]   
        Gs[k][5, 6+k] = 0.5 * A[k,1]   
        Gs[k][8, 6+k] = -b[k]   
    
    hs = [ matrix(8*[0.0] + [-1.0], (3,3)) for k in xrange(m) ] + \
        [ matrix(0.0, (3,3)) ]

    # Constraints tau >= 0.
    Gl, hl = spmatrix(-1.0, range(m), range(6,6+m)), matrix(0.0, (m,1)) 

    sol = solvers.sdp(c, Gl, hl, Gs, hs)
    P = matrix(sol['x'][[0,1,1,2]], (2,2))  
    q = matrix(sol['x'][[3,4]], (2,1))  
    r = sol['x'][5]
    bound = 1.0 - Sigma[0]*P[0] - 2*Sigma[1]*P[1] - Sigma[3]*P[3] - r

    # Worst-case distribution from dual solution.
    X = [ Z[2,:2].T / Z[2,2] for Z in sol['zs'] if Z[2,2] > 1e-5 ]

    return bound, P, q, r, X


# Compute bound for s0 with sigma = 1.0.
# Write ellipse {x | x'*P*x + 2*q'*x + r = 1} in the form 
# {xc + L^{-T}*u | ||u||_2 = 1}

Sigma = matrix([1.0, 0.0, 0.0, 1.0], (2,2))
bnd, P, q, r, X = cheb(A0, b0, Sigma)
xc = -q
L = +P
lapack.posv(L, xc)
L /= sqrt(1 - r - blas.dot(q, xc))

def makefig1():
    pylab.figure(1, facecolor='w', figsize=(6,6))
    pylab.plot(V[0,:].T, V[1,:].T, 'b-')
    nopts = 1000
    angles = matrix( [a*2.0*pi/nopts for a in xrange(nopts) ], 
        (1,nopts) )
    circle = matrix(0.0, (2,nopts))
    circle[0,:], circle[1,:] = cos(angles), sin(angles)
    for k in xrange(len(C)):
        c = C[k]
        pylab.plot([c[0]], [c[1]], 'ow')
        pylab.text(c[0], c[1], "s%d" %k)
        pylab.plot(c[0] + circle[0,:].T, c[1]+circle[1,:].T, 'g:')
        if k >= 1:
            v = V[:,k-1]
            if k==1: 
                dir = 0.5 * (C[k] + C[-1]) - v
            else: 
                dir = 0.5 * (C[k] + C[k-1]) - v
            pylab.plot([v[0], v[0] + 5*dir[0]], 
                [v[1], v[1] + 5*dir[1]], 'b-')
    ellipse = +circle
    blas.trsm(L, ellipse, transA='T')
    pylab.plot(xc[0] + ellipse[0,:].T, xc[1]+ellipse[1,:].T, 'r-')
    for Xk in X: 
        pylab.plot([Xk[0]], [Xk[1]], 'ro')

    pylab.axis([-5, 5, -5, 5])
    pylab.title('Geometrical interpretation of Chebyshev bound (fig. 7.7)')
    pylab.axis('off')
makefig1()
#print "Close figure to continue." 
#pylab.show()


# Compute bounds for s0 with sigma in [0,2.5]
nosigmas = 150
sigmas = 0.001 + (2.5 - 0.001) / nosigmas * matrix(range(nosigmas), 
    tc='d')
I = matrix([1.0, 0.0, 0.0, 1.0], (2,2))
print "Computing lower bounds for symbol 0 ..."  
bnds0 = [ cheb(A0, b0, sigma**2*I)[0] for sigma in sigmas ]

pylab.figure(2,facecolor='w')
pylab.plot(sigmas, bnds0)
pylab.axis([0, 2.5, 0.0, 1.0])
pylab.title('Chebyshev lower bounds (fig 7.6)')
pylab.text(sigmas[nosigmas/2], bnds0[nosigmas/2], 's0')
pylab.xlabel('sigma')
pylab.ylabel('Probability of correct detection')
#print "Close figure to continue."
#pylab.show()

# Bounds for s1.
b1 -= A1*C[1]  # put s1 at the origin
print "Computing lower bounds for symbol 1 ..." 
bnds1 = [ cheb(A1, b1, sigma**2*I)[0] for sigma in sigmas ]

pylab.figure(2,facecolor='w')
pylab.plot(sigmas,bnds0, '-b', sigmas, bnds1, 'r')
pylab.axis([0, 2.5, 0.0, 1.0])
pylab.title('Chebyshev lower bounds (fig 7.6)')
pylab.text(sigmas[nosigmas/2], bnds0[nosigmas/2], 's0')
pylab.text(sigmas[nosigmas/2], bnds1[nosigmas/2], 's1')
pylab.xlabel('sigma')
pylab.ylabel('Probability of correct detection')
#print "Close figure to continue."
#pylab.show()

# Bounds for s2.
b2 -= A2*C[2]  # put s2 at the origin
print "Computing lower bounds for symbol 2 ..." 
bnds2 = [ cheb(A2, b2, sigma**2*I)[0] for sigma in sigmas ]

makefig1()
pylab.figure(2,facecolor='w')
pylab.plot(sigmas,bnds0, '-b', sigmas, bnds1, 'r', sigmas, bnds2, 'g')
pylab.axis([0, 2.5, 0.0, 1.0])
pylab.title('Chebyshev lower bounds (fig 7.6)')
pylab.text(sigmas[nosigmas/2], bnds0[nosigmas/2], 's0')
pylab.text(sigmas[nosigmas/2], bnds1[nosigmas/2], 's1')
pylab.text(sigmas[nosigmas/2], bnds2[nosigmas/2], 's2')
pylab.xlabel('sigma')
pylab.ylabel('Probability of correct detection')

pylab.show()