Sophie

Sophie

distrib > Mandriva > 2010.2 > i586 > by-pkgid > b92d07bcce6b7f2da3b9721b1d9483a1 > files > 54

python-cvxopt-1.1.2-1mdv2010.1.i586.rpm

#!/usr/bin/python

# Figures 6.11-14, pages 315-317.
# Total variation reconstruction.

from math import pi
from cvxopt import blas, lapack, solvers 
from cvxopt import matrix, spmatrix, sin, mul, div, normal
solvers.options['show_progress'] = 0
import pylab

n = 2000
t = matrix( range(n), tc='d' )
ex = matrix( n/4*[1.0] + n/4*[-1.0] + n/4*[1.0] + n/4*[-1.0] ) + \
    0.5 * sin( 2.0*pi/n * t )
corr = ex + 0.1 * normal(n,1)

pylab.figure(1, facecolor='w', figsize=(8,5))
pylab.subplot(211)
pylab.plot(t, ex)
pylab.ylabel('x[i]')
pylab.xlabel('i')
pylab.axis([0, 2000, -2, 2])
pylab.title('Original and corrupted signal (fig. 6.11)')
pylab.subplot(212)
pylab.plot(t, corr)
pylab.ylabel('xcor[i]')
pylab.xlabel('i')
pylab.axis([0, 2000, -2, 2])


# Quadratic smoothing.
# A = D'*D is an n by n tridiagonal matrix with -1.0 on the 
# upper/lower diagonal and 1, 2, 2, ..., 2, 2, 1 on the diagonal.
Ad = matrix([1.0] + (n-2)*[2.0] + [1.0])
As = matrix(-1.0, (n-1,1))

nopts = 100
deltas = -10.0 + 20.0/(nopts-1) * matrix(range(nopts))

cost1, cost2 = [], []
for delta in deltas:
    xr = +corr 
    lapack.ptsv(1.0 + 10**delta * Ad, 10**delta * As, xr)
    cost1 += [blas.nrm2(xr - corr)] 
    cost2 += [blas.nrm2(xr[1:] - xr[:-1])] 

# Find solutions with ||xhat - xcorr || roughly equal to 4, 7, 10.
mv1, k1 = min(zip([abs(c - 10.0) for c in cost1], range(nopts)))
xr1 = +corr 
lapack.ptsv(1.0 + 10**deltas[k1] * Ad, 10**deltas[k1] * As, xr1)
mv2, k2 = min(zip([abs(c - 7.0) for c in cost1], range(nopts)))
xr2 = +corr 
lapack.ptsv(1.0 + 10**deltas[k2] * Ad, 10**deltas[k2] * As, xr2)
mv3, k3 = min(zip([abs(c - 4.0) for c in cost1], range(nopts)))
xr3 = +corr 
lapack.ptsv(1.0 + 10**deltas[k3] * Ad, 10**deltas[k3] * As, xr3)

pylab.figure(2, facecolor='w')
pylab.plot(cost1, cost2, [blas.nrm2(corr)], [0], 'bo',
    [0], [blas.nrm2(corr[1:] - corr[:-1])], 'bo') 
pylab.plot([cost1[k1]], [cost2[k1]], 'bo', 
    [cost1[k2]], [cost2[k2]], 'bo', [cost1[k3]], [cost2[k3]], 'bo')
pylab.text(cost1[k1], cost2[k1], '1')
pylab.text(cost1[k2], cost2[k2], '2')
pylab.text(cost1[k3], cost2[k3], '3')
pylab.title('Optimal trade-off curve (quadratic smoothing)')
pylab.xlabel('|| xhat - xcor ||_2')
pylab.ylabel('|| D*xhat ||_2')
pylab.axis([-0.4, 50, -0.1, 8.0])
pylab.grid()

pylab.figure(3, facecolor='w', figsize=(8,7.5))
pylab.subplot(311)
pylab.plot(t, xr1)
pylab.axis([0, 2000, -2.0, 2.0])
pylab.ylabel('xhat1[i]')
pylab.title('Three quadratically smoothed sigals (fig. 6.12).')
pylab.subplot(312)
pylab.plot(t, xr2)
pylab.ylabel('xhat2[i]')
pylab.axis([0, 2000, -2.0, 2.0])
pylab.subplot(313)
pylab.plot(t, xr3)
pylab.axis([0, 2000, -2.0, 2.0])
pylab.ylabel('xhat3[i]')
pylab.xlabel('i')
#print "Close figures to start total variation reconstruction."
#pylab.show()


# Total variation smoothing.
#
# minimize (1/2) * ||x-corr||_2^2 + delta * || D*x ||_1
#
# minimize    (1/2) * ||x-corr||_2^2 + delta * 1'*y
# subject to  -y <= D*x <= y
#
# Variables x (n), y (n-1).

def tv(delta):
    """
        minimize    (1/2) * ||x-corr||_2^2 + delta * sum(y)
        subject to  -y <= D*x <= y
    
    Variables x (n), y (n-1).
    """

    q = matrix(0.0, (2*n-1,1))
    q[:n] = -corr  
    q[n:] = delta

    def P(u, v, alpha = 1.0, beta = 0.0):
        """
            v := alpha*u + beta*v
        """

        v *= beta
        v[:n] += alpha*u[:n]


    def G(u, v, alpha = 1.0, beta = 0.0, trans = 'N'):
        """
           v := alpha*[D, -I;  -D, -I] * u + beta * v  (trans = 'N')
           v := alpha*[D, -I;  -D, -I]' * u + beta * v  (trans = 'T')

        For an n-vector z, D*z = z[1:] - z[:-1].
        For an (n-1)-vector z, D'*z = [-z;0] + [0; z].
        """

        v *= beta
        if trans == 'N':
            y = u[1:n] - u[:n-1]
            v[:n-1] += alpha*(y - u[n:])
            v[n-1:] += alpha*(-y - u[n:])
        else:
            y = u[:n-1] - u[n-1:]
            v[:n-1] -= alpha * y
            v[1:n] += alpha * y
            v[n:] -= alpha * (u[:n-1] + u[n-1:])

    h = matrix(0.0, (2*(n-1),1))


    # Customized solver for KKT system with coefficient
    #
    #     [  I    0    D'   -D' ] 
    #     [  0    0   -I    -I  ] 
    #     [  D   -I   -D1    0  ] 
    #     [ -D   -I    0    -D2 ].
     
    # Diagonal and subdiagonal.
    Sd = matrix(0.0, (n,1))
    Se = matrix(0.0, (n-1,1))

    def Fkkt(W):
        """
        Factor the tridiagonal matrix

             S = I + 4.0 * D' * diag( d1.*d2./(d1+d2) ) * D 

        with d1 = W['di'][:n-1]**2 = diag(D1^-1) 
        d2 = W['di'][n-1:]**2 = diag(D2^-1).
        """

        d1 = W['di'][:n-1]**2
        d2 = W['di'][n-1:]**2
        d = 4.0*div( mul(d1,d2), d1+d2) 
        Sd[:] = 1.0
        Sd[:n-1] += d
        Sd[1:] += d
        Se[:] = -d
        lapack.pttrf(Sd, Se)

        def g(x, y, z):

            """
            Solve 

                [  I   0   D'  -D' ] [x[:n]   ]    [bx[:n]   ]
                [  0   0  -I   -I  ] [x[n:]   ] =  [bx[n:]   ]
                [  D  -I  -D1   0  ] [z[:n-1] ]    [bz[:n-1] ]
                [ -D  -I   0   -D2 ] [z[n-1:] ]    [bz[n-1:] ].

            First solve
                 
                S*x[:n] = bx[:n] + D' * ( (d1-d2) ./ (d1+d2) .* bx[n:] 
                    + 2*d1.*d2./(d1+d2) .* (bz[:n-1] - bz[n-1:]) ).

            Then take

                x[n:] = (d1+d2)^-1 .* ( bx[n:] - d1.*bz[:n-1] 
                         - d2.*bz[n-1:]  + (d1-d2) .* D*x[:n] ) 
                z[:n-1] = d1 .* (D*x[:n] - x[n:] - bz[:n-1])
                z[n-1:] = d2 .* (-D*x[:n] - x[n:] - bz[n-1:]).
            """

            # y = (d1-d2) ./ (d1+d2) .* bx[n:] + 
            #     2*d1.*d2./(d1+d2) .* (bz[:n-1] - bz[n-1:])
            y = mul( div(d1-d2, d1+d2), x[n:]) + \
                mul( 0.5*d, z[:n-1]-z[n-1:] ) 

            # x[:n] += D*y
            x[:n-1] -= y
            x[1:n] += y

            # x[:n] := S^-1 * x[:n]
            lapack.pttrs(Sd, Se, x) 

            # u = D*x[:n]
            u = x[1:n] - x[0:n-1]

            # x[n:] = (d1+d2)^-1 .* ( bx[n:] - d1.*bz[:n-1] 
            #     - d2.*bz[n-1:]  + (d1-d2) .* u) 
            x[n:] = div( x[n:] - mul(d1, z[:n-1]) - 
                mul(d2, z[n-1:]) + mul(d1-d2, u), d1+d2 )

            # z[:n-1] = d1 .* (D*x[:n] - x[n:] - bz[:n-1])
            # z[n-1:] = d2 .* (-D*x[:n] - x[n:] - bz[n-1:])
            z[:n-1] = mul(W['di'][:n-1], u - x[n:] - z[:n-1])
            z[n-1:] = mul(W['di'][n-1:], -u - x[n:] - z[n-1:])

        return g

    return solvers.coneqp(P, q, G, h, kktsolver = Fkkt)['x'][:n]


nopts = 15
deltas = -3.0 + (3.0-(-3.0))/(nopts-1) * matrix(range(nopts))
cost1, cost2 = [], []
for delta, k in zip(deltas, xrange(nopts)):
    xtv = tv(10**delta)
    cost1 += [blas.nrm2(xtv - corr)] 
    cost2 += [blas.asum(xtv[1:] - xtv[:-1])] 
mv1, k1 = min(zip([abs(c - 20.0) for c in cost2], range(nopts)))
xtv1 = tv(10**deltas[k1])
mv2, k2 = min(zip([abs(c - 8.0) for c in cost2], range(nopts)))
xtv2 = tv(10**deltas[k2])
mv3, k3 = min(zip([abs(c - 5.0) for c in cost2], range(nopts)))
xtv3 = tv(10**deltas[k3])

pylab.figure(4, facecolor='w', figsize=(8,5))
pylab.subplot(211)
pylab.plot(t, ex)
pylab.ylabel('x[i]')
pylab.xlabel('i')
pylab.axis([0, 2000, -2, 2])
pylab.title('Original and corrupted signal (fig. 6.11)')
pylab.subplot(212)
pylab.plot(t, corr)
pylab.ylabel('xcor[i]')
pylab.xlabel('i')
pylab.axis([0, 2000, -2, 2])

pylab.figure(5, facecolor='w') #figsize=(8,7.5))
pylab.plot(cost1, cost2, [blas.nrm2(corr)], [0], 'bo',
        [0], [blas.asum(corr[1:] - corr[:-1])], 'bo') 
pylab.plot([cost1[k1]], [cost2[k1]], 'bo', [cost1[k2]], [cost2[k2]], 'bo',
    [cost1[k3]], [cost2[k3]], 'bo')
pylab.text(cost1[k1], cost2[k1],'1')
pylab.text(cost1[k2], cost2[k2],'2')
pylab.text(cost1[k3], cost2[k3],'3')
pylab.grid()
pylab.axis([-1, 50, -5, 250])
pylab.xlabel('||xhat-xcor||_2')
pylab.ylabel('||D*xhat||_1')
pylab.title('Optimal trade-off curve (fig. 6.13)')

pylab.figure(6, facecolor='w', figsize=(8,7.5))
pylab.subplot(311)
pylab.plot(t, xtv1)
pylab.axis([0, 2000, -2.0, 2.0])
pylab.ylabel('xhat1[i]')
pylab.title('Three reconstructed signals (fig. 6.14)')
pylab.subplot(312)
pylab.plot(t, xtv2)
pylab.ylabel('xhat2[i]')
pylab.axis([0, 2000, -2.0, 2.0])
pylab.subplot(313)
pylab.plot(t, xtv3)
pylab.axis([0, 2000, -2.0, 2.0])
pylab.ylabel('xhat3[i]')
pylab.xlabel('i')
pylab.show()